Mathematical Preliminaries

Exercise Set 1.1, page 14

1. For each part, $f \in C[a, b]$ on the given interval. Since $f(a)$ and $f(b)$ are of opposite sign, the Intermediate Value Theorem implies that a number c exists with $f(c)=0$.
2. (a) $f(x)=\sqrt{(x)}-\cos x ; f(0)=-1<0, f(1)=1-\cos 1>0.45>0$; Intermediate Value Theorem implies there is a c in $(0,1)$ such that $f(c)=0$.
(b) $f(x)=e^{x}-x^{2}+3 x-2 ; f(0)=-1<0, f(1)=e>0$; Intermediate Value Theorem implies there is a c in $(0,1)$ such that $f(c)=0$.
(c) $f(x)=-3 \tan (2 x)+x ; f(0)=0$ so there is a c in $[0,1]$ such that $f(c)=0$.
(d) $f(x)=\ln x-x^{2}+\frac{5}{2} x-1 ; f\left(\frac{1}{2}\right)=-\ln 2<0, f(1)=\frac{1}{2}>0$; Intermediate Value Theorem implies there is a c in $\left(\frac{1}{2}, 1\right)$ such that $f(c)=0$.
3. For each part, $f \in C[a, b], f^{\prime}$ exists on (a, b) and $f(a)=f(b)=0$. Rolle's Theorem implies that a number c exists in (a, b) with $f^{\prime}(c)=0$. For part (d), we can use $[a, b]=[-1,0]$ or $[a, b]=[0,2]$.
4. (a) $[0,1]$
(b) $[0,1],[4,5],[-1,0]$
(c) $[-2,-2 / 3],[0,1],[2,4]$
(d) $[-3,-2],[-1,-0.5]$, and $[-0.5,0]$
5. The maximum value for $|f(x)|$ is given below.
(a) 0.4620981
(b) 0.8
(c) 5.164000
(d) 1.582572
6. (a) $f(x)=\frac{2 x}{x^{2}+1} ; 0 \leq x \leq 2 ; f(x) \geq 0$ on $[0,2], f^{\prime}(1)=0, f(0)=0, f(1)=1, f(2)=$ $\frac{4}{5}, \max _{0 \leq x \leq 2}|f(x)|=1$.
(b) $f(x)=x^{2} \sqrt{4-x} ; 0 \leq x \leq 4 ; f^{\prime}(0)=0, f^{\prime}(3.2)=0, f(0)=0, f(3.2)=9.158934436, f(4)=$ $0, \max _{0 \leq x \leq 4}|f(x)|=9.158934436$.
(c) $f(x)=x^{3}-4 x+2 ; 1 \leq x \leq 2 ; f^{\prime}\left(\frac{2 \sqrt{3}}{3}\right)=0, f^{\prime}(1)=-1, f\left(\frac{2 \sqrt{3}}{3}\right)=-1.079201435, f(2)=$ $2, \max _{1 \leq x \leq 2}|f(x)|=2$.
(d) $f(x)=x \sqrt{3-x^{2}} ; 0 \leq x \leq 1 ; f^{\prime}\left(\sqrt{\frac{3}{2}}\right)=0, \sqrt{\frac{3}{2}} \operatorname{not}$ in $[0,1], f(0)=0, f(1)=\sqrt{2}, \max _{0 \leq x \leq 1}|f(x)|=$ $\sqrt{2}$.
7. For each part, $f \in C[a, b], f^{\prime}$ exists on (a, b) and $f(a)=f(b)=0$. Rolle's Theorem implies that a number c exists in (a, b) with $f^{\prime}(c)=0$. For part (d), we can use $[a, b]=[-1,0]$ or $[a, b]=[0,2]$.
8. Suppose p and q are in $[a, b]$ with $p \neq q$ and $f(p)=f(q)=0$. By the Mean Value Theorem, there exists $\xi \in(a, b)$ with

$$
f(p)-f(q)=f^{\prime}(\xi)(p-q)
$$

But, $f(p)-f(q)=0$ and $p \neq q$. So $f^{\prime}(\xi)=0$, contradicting the hypothesis.
9. (a) $P_{2}(x)=0$
(b) $R_{2}(0.5)=0.125$; actual error $=0.125$
(c) $P_{2}(x)=1+3(x-1)+3(x-1)^{2}$
(d) $R_{2}(0.5)=-0.125$; actual error $=-0.125$
10. $P_{3}(x)=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}$

x	0.5	0.75	1.25	1.5
$P_{3}(x)$	1.2265625	1.3310547	1.5517578	1.6796875
$\sqrt{x+1}$	1.2247449	1.3228757	1.5	1.5811388
$\left\|\sqrt{x+1}-P_{3}(x)\right\|$	0.0018176	0.0081790	0.0517578	0.0985487

11. Since

$$
P_{2}(x)=1+x \quad \text { and } \quad R_{2}(x)=\frac{-2 e^{\xi}(\sin \xi+\cos \xi)}{6} x^{3}
$$

for some ξ between x and 0 , we have the following:
(a) $P_{2}(0.5)=1.5$ and $\left|f(0.5)-P_{2}(0.5)\right| \leq 0.0932$;
(b) $\left|f(x)-P_{2}(x)\right| \leq 1.252$;
(c) $\int_{0}^{1} f(x) d x \approx 1.5$;
(d) $\left|\int_{0}^{1} f(x) d x-\int_{0}^{1} P_{2}(x) d x\right| \leq \int_{0}^{1}\left|R_{2}(x)\right| d x \leq 0.313$, and the actual error is 0.122 .
12. $P_{2}(x)=1.461930+0.617884\left(x-\frac{\pi}{6}\right)-0.844046\left(x-\frac{\pi}{6}\right)^{2}$ and $R_{2}(x)=-\frac{1}{3} e^{\xi}(\sin \xi+\cos \xi)\left(x-\frac{\pi}{6}\right)^{3}$ for some ξ between x and $\frac{\pi}{6}$.
(a) $P_{2}(0.5)=1.446879$ and $f(0.5)=1.446889$. An error bound is 1.01×10^{-5}, and the actual error is 1.0×10^{-5}.
(b) $\left|f(x)-P_{2}(x)\right| \leq 0.135372$ on $[0,1]$
(c) $\int_{0}^{1} P_{2}(x) d x=1.376542$ and $\int_{0}^{1} f(x) d x=1.378025$
(d) An error bound is 7.403×10^{-3}, and the actual error is 1.483×10^{-3}.
13. $P_{3}(x)=(x-1)^{2}-\frac{1}{2}(x-1)^{3}$
(a) $P_{3}(0.5)=0.312500, f(0.5)=0.346574$. An error bound is $0.291 \overline{6}$, and the actual error is 0.034074 .
(b) $\left|f(x)-P_{3}(x)\right| \leq 0.291 \overline{6}$ on $[0.5,1.5]$
(c) $\int_{0.5}^{1.5} P_{3}(x) d x=0.08 \overline{3}, \int_{0.5}^{1.5}(x-1) \ln x d x=0.088020$
(d) An error bound is $0.058 \overline{3}$, and the actual error is 4.687×10^{-3}.
14. (a) $P_{3}(x)=-4+6 x-x^{2}-4 x^{3} ; P_{3}(0.4)=-2.016$
(b) $\left|R_{3}(0.4)\right| \leq 0.05849 ;\left|f(0.4)-P_{3}(0.4)\right|=0.013365367$
(c) $P_{4}(x)=-4+6 x-x^{2}-4 x^{3} ; P_{4}(0.4)=-2.016$
(d) $\left|R_{4}(0.4)\right| \leq 0.01366 ;\left|f(0.4)-P_{4}(0.4)\right|=0.013365367$
15. $\quad P_{4}(x)=x+x^{3}$
(a) $\left|f(x)-P_{4}(x)\right| \leq 0.012405$
(b) $\int_{0}^{0.4} P_{4}(x) d x=0.0864, \int_{0}^{0.4} x e^{x^{2}} d x=0.086755$
(c) 8.27×10^{-4}
(d) $P_{4}^{\prime}(0.2)=1.12, f^{\prime}(0.2)=1.124076$. The actual error is 4.076×10^{-3}.
16. First we need to convert the degree measure for the sine function to radians. We have $180^{\circ}=\pi$ radians, so $1^{\circ}=\frac{\pi}{180}$ radians. Since,

$$
f(x)=\sin x, \quad f^{\prime}(x)=\cos x, \quad f^{\prime \prime}(x)=-\sin x, \quad \text { and } \quad f^{\prime \prime \prime}(x)=-\cos x
$$

we have $f(0)=0, f^{\prime}(0)=1$, and $f^{\prime \prime}(0)=0$.
The approximation $\sin x \approx x$ is given by

$$
f(x) \approx P_{2}(x)=x, \quad \text { and } \quad R_{2}(x)=-\frac{\cos \xi}{3!} x^{3}
$$

If we use the bound $|\cos \xi| \leq 1$, then

$$
\left|\sin \frac{\pi}{180}-\frac{\pi}{180}\right|=\left|R_{2}\left(\frac{\pi}{180}\right)\right|=\left|\frac{-\cos \xi}{3!}\left(\frac{\pi}{180}\right)^{3}\right| \leq 8.86 \times 10^{-7}
$$

17. Since $42^{\circ}=7 \pi / 30$ radians, use $x_{0}=\pi / 4$. Then

$$
\left|R_{n}\left(\frac{7 \pi}{30}\right)\right| \leq \frac{\left(\frac{\pi}{4}-\frac{7 \pi}{30}\right)^{n+1}}{(n+1)!}<\frac{(0.053)^{n+1}}{(n+1)!}
$$

For $\left|R_{n}\left(\frac{7 \pi}{30}\right)\right|<10^{-6}$, it suffices to take $n=3$. To 7 digits,

$$
\cos 42^{\circ}=0.7431448 \quad \text { and } \quad P_{3}\left(42^{\circ}\right)=P_{3}\left(\frac{7 \pi}{30}\right)=0.7431446
$$

so the actual error is 2×10^{-7}.
18. $\quad P_{n}(x)=\sum_{k=0}^{n} x^{k}, n \geq 19$
19. $\quad P_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} x^{k}, n \geq 7$
20. For n odd, $P_{n}(x)=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots+\frac{1}{n}(-1)^{(n-1) / 2} x^{n}$. For n even, $P_{n}(x)=P_{n-1}(x)$.
21. A bound for the maximum error is 0.0026 .
22. For $x<0, f(x)<2 x+k<0$, provided that $x<-\frac{1}{2} k$. Similarly, for $x>0, f(x)>2 x+k>0$, provided that $x>-\frac{1}{2} k$. By Theorem 1.11, there exists a number c with $f(c)=0$. If $f(c)=0$ and $f\left(c^{\prime}\right)=0$ for some $c^{\prime} \neq c$, then by Theorem 1.7, there exists a number p between c and c^{\prime} with $f^{\prime}(p)=0$. However, $f^{\prime}(x)=3 x^{2}+2>0$ for all x.
23. Since $R_{2}(1)=\frac{1}{6} e^{\xi}$, for some ξ in $(0,1)$, we have $\left|E-R_{2}(1)\right|=\frac{1}{6}\left|1-e^{\xi}\right| \leq \frac{1}{6}(e-1)$.
24. (a) Use the series

$$
e^{-t^{2}}=\sum_{k=0}^{\infty} \frac{(-1)^{k} t^{2 k}}{k!} \quad \text { to integrate } \quad \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

and obtain the result.
(b) We have

$$
\begin{aligned}
\frac{2}{\sqrt{\pi}} e^{-x^{2}} \sum_{k=0}^{\infty} \frac{2^{k} x^{2 k+1}}{1 \cdot 3 \cdots(2 k+1)}= & \frac{2}{\sqrt{\pi}}\left[1-x^{2}+\frac{1}{2} x^{4}-\frac{1}{6} x^{7}+\frac{1}{24} x^{8}+\cdots\right] \\
& \cdot\left[x+\frac{2}{3} x^{3}+\frac{4}{15} x^{5}+\frac{8}{105} x^{7}+\frac{16}{945} x^{9}+\cdots\right] \\
= & \frac{2}{\sqrt{\pi}}\left[x-\frac{1}{3} x^{3}+\frac{1}{10} x^{5}-\frac{1}{42} x^{7}+\frac{1}{216} x^{9}+\cdots\right]=\operatorname{erf}(x)
\end{aligned}
$$

(c) 0.8427008
(d) 0.8427069
(e) The series in part (a) is alternating, so for any positive integer n and positive x we have the bound

$$
\left|\operatorname{erf}(x)-\frac{2}{\sqrt{\pi}} \sum_{k=0}^{n} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1) k!}\right|<\frac{x^{2 n+3}}{(2 n+3)(n+1)!}
$$

We have no such bound for the positive term series in part (b).
25. (a) $P_{n}^{(k)}\left(x_{0}\right)=f^{(k)}\left(x_{0}\right)$ for $k=0,1, \ldots, n$. The shapes of P_{n} and f are the same at x_{0}.
(b) $P_{2}(x)=3+4(x-1)+3(x-1)^{2}$.
26. (a) The assumption is that $f\left(x_{i}\right)=0$ for each $i=0,1, \ldots, n$. Applying Rolle's Theorem on each on the intervals $\left[x_{i}, x_{i+1}\right]$ implies that for each $i=0,1, \ldots, n-1$ there exists a number z_{i} with $f^{\prime}\left(z_{i}\right)=0$. In addition, we have

$$
a \leq x_{0}<z_{0}<x_{1}<z_{1}<\cdots<z_{n-1}<x_{n} \leq b
$$

(b) Apply the logic in part (a) to the function $g(x)=f^{\prime}(x)$ with the number of zeros of g in $[a, b]$ reduced by 1 . This implies that numbers w_{i}, for $i=0,1, \ldots, n-2$ exist with

$$
g^{\prime}\left(w_{i}\right)=f^{\prime \prime}\left(w_{i}\right)=0, \quad \text { and } \quad a<z_{0}<w_{0}<z_{1}<w_{1}<\cdots w_{n-2}<z_{n-1}<b
$$

(c) Continuing by induction following the logic in parts (a) and (b) provides $n+1-j$ distinct zeros of $f^{(j)}$ in $[a, b]$.
(d) The conclusion of the theorem follows from part (c) when $j=n$, for in this case there will be (at least) $(n+1)-n=1$ zero in $[a, b]$.
27. First observe that for $f(x)=x-\sin x$ we have $f^{\prime}(x)=1-\cos x \geq 0$, because $-1 \leq \cos x \leq 1$ for all values of x.
(a) The observation implies that $f(x)$ is non-decreasing for all values of x, and in particular that $f(x)>f(0)=0$ when $x>0$. Hence for $x \geq 0$, we have $x \geq \sin x$, and $|\sin x|=$ $\sin x \leq x=|x|$.
(b) When $x<0$, we have $-x>0$. Since $\sin x$ is an odd function, the fact (from part (a)) that $\sin (-x) \leq(-x)$ implies that $|\sin x|=-\sin x \leq-x=|x|$.
As a consequence, for all real numbers x we have $|\sin x| \leq|x|$.
28. (a) Let x_{0} be any number in $[a, b]$. Given $\epsilon>0$, let $\delta=\epsilon / L$. If $\left|x-x_{0}\right|<\delta$ and $a \leq x \leq b$, then $\left|f(x)-f\left(x_{0}\right)\right| \leq L\left|x-x_{0}\right|<\epsilon$.
(b) Using the Mean Value Theorem, we have

$$
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|=\left|f^{\prime}(\xi)\right|\left|x_{2}-x_{1}\right|
$$

for some ξ between x_{1} and x_{2}, so

$$
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right| \leq L\left|x_{2}-x_{1}\right|
$$

(c) One example is $f(x)=x^{1 / 3}$ on $[0,1]$.
29. (a) The number $\frac{1}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)$ is the average of $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$, so it lies between these two values of f. By the Intermediate Value Theorem 1.11 there exist a number ξ between x_{1} and x_{2} with

$$
f(\xi)=\frac{1}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)=\frac{1}{2} f\left(x_{1}\right)+\frac{1}{2} f\left(x_{2}\right)
$$

(b) Let $m=\min \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}$ and $M=\max \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}$. Then $m \leq f\left(x_{1}\right) \leq M$ and $m \leq f\left(x_{2}\right) \leq M$, so

$$
c_{1} m \leq c_{1} f\left(x_{1}\right) \leq c_{1} M \quad \text { and } \quad c_{2} m \leq c_{2} f\left(x_{2}\right) \leq c_{2} M
$$

Thus

$$
\left(c_{1}+c_{2}\right) m \leq c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right) \leq\left(c_{1}+c_{2}\right) M
$$

and

$$
m \leq \frac{c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)}{c_{1}+c_{2}} \leq M
$$

By the Intermediate Value Theorem 1.11 applied to the interval with endpoints x_{1} and x_{2}, there exists a number ξ between x_{1} and x_{2} for which

$$
f(\xi)=\frac{c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)}{c_{1}+c_{2}}
$$

(c) Let $f(x)=x^{2}+1, x_{1}=0, x_{2}=1, c_{1}=2$, and $c_{2}=-1$. Then for all values of x,

$$
f(x)>0 \quad \text { but } \quad \frac{c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)}{c_{1}+c_{2}}=\frac{2(1)-1(2)}{2-1}=0 .
$$

30. (a) Since f is continuous at p and $f(p) \neq 0$, there exists a $\delta>0$ with

$$
|f(x)-f(p)|<\frac{|f(p)|}{2}
$$

for $|x-p|<\delta$ and $a<x<b$. We restrict δ so that $[p-\delta, p+\delta]$ is a subset of $[a, b]$. Thus, for $x \in[p-\delta, p+\delta]$, we have $x \in[a, b]$. So

$$
-\frac{|f(p)|}{2}<f(x)-f(p)<\frac{|f(p)|}{2} \quad \text { and } \quad f(p)-\frac{|f(p)|}{2}<f(x)<f(p)+\frac{|f(p)|}{2}
$$

If $f(p)>0$, then

$$
f(p)-\frac{|f(p)|}{2}=\frac{f(p)}{2}>0, \quad \text { so } \quad f(x)>f(p)-\frac{|f(p)|}{2}>0
$$

If $f(p)<0$, then $|f(p)|=-f(p)$, and

$$
f(x)<f(p)+\frac{|f(p)|}{2}=f(p)-\frac{f(p)}{2}=\frac{f(p)}{2}<0
$$

In either case, $f(x) \neq 0$, for $x \in[p-\delta, p+\delta]$.
(b) Since f is continuous at p and $f(p)=0$, there exists a $\delta>0$ with

$$
|f(x)-f(p)|<k, \quad \text { for } \quad|x-p|<\delta \quad \text { and } \quad a<x<b
$$

We restrict δ so that $[p-\delta, p+\delta]$ is a subset of $[a, b]$. Thus, for $x \in[p-\delta, p+\delta]$, we have

$$
|f(x)|=|f(x)-f(p)|<k
$$

Exercise Set 1.2, page 28

1. We have

	Absolute error	Relative error
(a)	0.001264	4.025×10^{-4}
(b)	7.346×10^{-6}	2.338×10^{-6}
(c)	2.818×10^{-4}	1.037×10^{-4}
(d)	2.136×10^{-4}	1.510×10^{-4}

2. We have

	Absolute error	Relative error
(a)	2.647×10^{1}	1.202×10^{-3} arule
(b)	1.454×10^{1}	1.050×10^{-2}
(c)	420	1.042×10^{-2}
(d)	3.343×10^{3}	9.213×10^{-3}

3. The largest intervals are
(a) $(149.85,150.15)$
(b) $(899.1,900.9)$
(c) $(1498.5,1501.5)$
(d) $(89.91,90.09)$
4. The largest intervals are:
(a) $(3.1412784,3.1419068)$
(b) $(2.7180100,2.7185536)$
(c) $(1.4140721,1.4143549)$
(d) $(1.9127398,1.9131224)$
5. The calculations and their errors are:
(a) (i) $17 / 15$
(ii) 1.13 (iii) 1.13 (iv) both 3×10^{-3}
(b) (i) $4 / 15$
(ii) 0.266 (iii) 0.266 (iv) both 2.5×10^{-3}
(c) (i) $139 / 660$
(ii) 0.211 (iii) 0.210
(iv) $2 \times 10^{-3}, 3 \times 10^{-3}$
(d) (i) $301 / 660$
(ii) 0.455 (iii) 0.456
(iv) $2 \times 10^{-3}, 1 \times 10^{-4}$
6. We have

	Approximation	Absolute error	Relative error
(a)	134	0.079	5.90×10^{-4}
(b)	133	0.499	3.77×10^{-3}
(c)	2.00	0.327	0.195
(d)	1.67	0.003	1.79×10^{-3}

7. We have

	Approximation	Absolute error	Relative error
(a)	1.80	0.154	0.0786
(b)	-15.1	0.0546	3.60×10^{-3}
(c)	0.286	2.86×10^{-4}	10^{-3}
(d)	23.9	0.058	2.42×10^{-3}

8. We have

	Approximation	Absolute error	Relative error
(a)	1.986	0.03246	0.01662
(b)	-15.16	0.005377	3.548×10^{-4}
(c)	0.2857	1.429×10^{-5}	5×10^{-5}
(d)	23.96	1.739×10^{-3}	7.260×10^{-5}

9. We have

	Approximation	Absolute error	Relative error
(a)	3.55	1.60	0.817
(b)	-15.2	0.0454	0.00299
(c)	0.284	0.00171	0.00600
(d)	0	0.02150	1

10. We have

	Approximation	Absolute error	Relative error
(a)	1.983	0.02945	0.01508
(b)	-15.15	0.004622	3.050×10^{-4}
(c)	0.2855	2.143×10^{-4}	7.5×10^{-4}
(d)	23.94	0.018261	7.62×10^{-4}

11. We have

	Approximation	Absolute error	Relative error
(a)	3.14557613	3.983×10^{-3}	1.268×10^{-3}
(b)	3.14162103	2.838×10^{-5}	9.032×10^{-6}

12. We have

	Approximation	Absolute error	Relative error
(a)	2.7166667	0.0016152	5.9418×10^{-4}
(b)	2.718281801	2.73×10^{-8}	1.00×10^{-8}

13. (a) We have

$$
\lim _{x \rightarrow 0} \frac{x \cos x-\sin x}{x-\sin x}=\lim _{x \rightarrow 0} \frac{-x \sin x}{1-\cos x}=\lim _{x \rightarrow 0} \frac{-\sin x-x \cos x}{\sin x}=\lim _{x \rightarrow 0} \frac{-2 \cos x+x \sin x}{\cos x}=-2
$$

(b) $f(0.1) \approx-1.941$
(c) $\frac{x\left(1-\frac{1}{2} x^{2}\right)-\left(x-\frac{1}{6} x^{3}\right)}{x-\left(x-\frac{1}{6} x^{3}\right)}=-2$
(d) The relative error in part (b) is 0.029 . The relative error in part (c) is 0.00050 .
14. (a) $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{x}=\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}}{1}=2$
(b) $f(0.1) \approx 2.05$
(c) $\frac{1}{x}\left(\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}\right)-\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}\right)\right)=\frac{1}{x}\left(2 x+\frac{1}{3} x^{3}\right)=2+\frac{1}{3} x^{2}$; using three-digit rounding arithmetic and $x=0.1$, we obtain 2.00 .
(d) The relative error in part (b) is $=0.0233$. The relative error in part (c) is $=0.00166$.
15.

	x_{1}	Absolute error	Relative error	x_{2}	Absolute error	Relative error
(a)	92.26	0.01542	1.672×10^{-4}	0.005419	6.273×10^{-7}	1.157×10^{-4}
(b)	0.005421	1.264×10^{-6}	2.333×10^{-4}	-92.26	4.580×10^{-3}	4.965×10^{-5}
(c)	10.98	6.875×10^{-3}	6.257×10^{-4}	0.001149	7.566×10^{-8}	6.584×10^{-5}
(d)	-0.001149	7.566×10^{-8}	6.584×10^{-5}	-10.98	6.875×10^{-3}	6.257×10^{-4}

16.

	Approximation for	x_{1}	Absolute error
Relative error			
(a)	1.903	6.53518×10^{-4}	3.43533×10^{-4}
(b)	-0.07840	8.79361×10^{-6}	1.12151×10^{-4}
(c)	1.223	1.29800×10^{-4}	1.06144×10^{-4}
(d)	6.235	1.7591×10^{-3}	2.8205×10^{-4}

	Approximation for	x_{2}	Absolute error
Relative error			
(a)	0.7430	4.04830×10^{-4}	5.44561
(b)	-4.060	3.80274×10^{-4}	9.36723×10^{-5}
(c)	-2.223	1.2977×10^{-4}	5.8393×10^{-5}
(d)	-0.3208	1.2063×10^{-4}	3.7617×10^{-4}

17.

	Approximation for x_{1}	Absolute error	Relative error
(a)	92.24	0.004580	4.965×10^{-5}
(b)	0.005417	2.736×10^{-6}	5.048×10^{-4}
(c)	10.98	6.875×10^{-3}	6.257×10^{-4}
(d)	-0.001149	7.566×10^{-8}	6.584×10^{-5}

	Approximation for x_{2}	Absolute error	Relative error
(a)	0.005418	2.373×10^{-6}	4.377×10^{-4}
(b)	-92.25	5.420×10^{-3}	5.875×10^{-5}
(c)	0.001149	7.566×10^{-8}	6.584×10^{-5}
(d)	-10.98	6.875×10^{-3}	6.257×10^{-4}

18.

	Approximation for x_{1}	Absolute error	Relative error
(a)	1.901	1.346×10^{-3}	7.078×10^{-4}
(b)	-0.07843	2.121×10^{-5}	2.705×10^{-4}
(c)	1.222	8.702×10^{-4}	7.116×10^{-4}
(d)	6.235	1.759×10^{-3}	2.820×10^{-4}

	Approximation for	x_{2}	Absolute error
Relative error			
(a)	0.7438	3.952×10^{-4}	5.316×10^{-4}
(b)	-4.059	6.197×10^{-4}	1.526×10^{-4}
(c)	-2.222	8.702×10^{-4}	3.915×10^{-4}
(d)	-0.3207	2.063×10^{-5}	6.433×10^{-5}

19. The machine numbers are equivalent to
(a) 3224
(b) -3224
(c) 1.32421875
(d) 1.3242187500000002220446049250313080847263336181640625
20. (a) Next Largest: 3224.00000000000045474735088646411895751953125;

Next Smallest: 3223.99999999999954525264911353588104248046875
(b) Next Largest: - 3224.00000000000045474735088646411895751953125 ;

Next Smallest: - 3223.99999999999954525264911353588104248046875
(c) Next Largest: 1.3242187500000002220446049250313080847263336181640625 ;

Next Smallest: 1.3242187499999997779553950749686919152736663818359375
(d) Next Largest: 1.324218750000000444089209850062616169452667236328125;

Next Smallest: 1.32421875
21. (b) The first formula gives -0.00658 , and the second formula gives -0.0100 . The true threedigit value is -0.0116 .
22. (a) -1.82
(b) 7.09×10^{-3}
(c) The formula in (b) is more accurate since subtraction is not involved.
23. The approximate solutions to the systems are
(a) $x=2.451, y=-1.635$
(b) $x=507.7, y=82.00$
24. (a) $x=2.460 \quad y=-1.634$
(b) $x=477.0 \quad y=76.93$
25. (a) In nested form, we have $f(x)=\left(\left(\left(1.01 e^{x}-4.62\right) e^{x}-3.11\right) e^{x}+12.2\right) e^{x}-1.99$.
(b) -6.79
(c) -7.07
(d) The absolute errors are

$$
|-7.61-(-6.71)|=0.82 \quad \text { and } \quad|-7.61-(-7.07)|=0.54
$$

Nesting is significantly better since the relative errors are

$$
\left|\frac{0.82}{-7.61}\right|=0.108 \quad \text { and } \quad\left|\frac{0.54}{-7.61}\right|=0.071
$$

26. Since $0.995 \leq P \leq 1.005,0.0995 \leq V \leq 0.1005,0.082055 \leq R \leq 0.082065$, and $0.004195 \leq$ $N \leq 0.004205$, we have $287.61^{\circ} \leq T \leq 293.42^{\circ}$. Note that $15^{\circ} \mathrm{C}=288.16 \mathrm{~K}$.
When P is doubled and V is halved, $1.99 \leq P \leq 2.01$ and $0.0497 \leq V \leq 0.0503$ so that $286.61^{\circ} \leq T \leq 293.72^{\circ}$. Note that $19^{\circ} \mathrm{C}=292.16 \mathrm{~K}$. The laboratory figures are within an acceptable range.
27. (a) $m=17$
(b) We have
$\binom{m}{k}=\frac{m!}{k!(m-k)!}=\frac{m(m-1) \cdots(m-k-1)(m-k)!}{k!(m-k)!}=\left(\frac{m}{k}\right)\left(\frac{m-1}{k-1}\right) \cdots\left(\frac{m-k-1}{1}\right)$
(c) $m=181707$
(d) $2,597,000$; actual error 1960; relative error 7.541×10^{-4}
28. When $d_{k+1}<5$,

$$
\left|\frac{y-f l(y)}{y}\right|=\frac{0 . d_{k+1} \ldots \times 10^{n-k}}{0 . d_{1} \ldots \times 10^{n}} \leq \frac{0.5 \times 10^{-k}}{0.1}=0.5 \times 10^{-k+1}
$$

When $d_{k+1}>5$,

$$
\left|\frac{y-f l(y)}{y}\right|=\frac{\left(1-0 . d_{k+1} \ldots\right) \times 10^{n-k}}{0 . d_{1} \ldots \times 10^{n}}<\frac{(1-0.5) \times 10^{-k}}{0.1}=0.5 \times 10^{-k+1}
$$

29. (a) The actual error is $\left|f^{\prime}(\xi) \epsilon\right|$, and the relative error is $\left|f^{\prime}(\xi) \epsilon\right| \cdot\left|f\left(x_{0}\right)\right|^{-1}$, where the number ξ is between x_{0} and $x_{0}+\epsilon$.
(b) (i) $1.4 \times 10^{-5} ; 5.1 \times 10^{-6}$ (ii) $2.7 \times 10^{-6} ; 3.2 \times 10^{-6}$
(c) (i) $1.2 ; 5.1 \times 10^{-5}$ (ii) $4.2 \times 10^{-5} ; 7.8 \times 10^{-5}$

Exercise Set 1.3, page 39

1 (a) The approximate sums are 1.53 and 1.54 , respectively. The actual value is 1.549 . Significant roundoff error occurs earlier with the first method.
(b) The approximate sums are 1.16 and 1.19 , respectively. The actual value is 1.197 . Significant roundoff error occurs earlier with the first method.
2. We have

	Approximation	Absolute Error	Relative Error
(a)	2.715	3.282×10^{-3}	1.207×10^{-3}
(b)	2.716	2.282×10^{-3}	8.394×10^{-4}
(c)	2.716	2.282×10^{-3}	8.394×10^{-4}
(d)	2.718	2.818×10^{-4}	1.037×10^{-4}

3. (a) 2000 terms
(b) 20,000,000,000 terms
4. 4 terms
5. 3 terms
6. (a) $O\left(\frac{1}{n}\right)$
(b) $O\left(\frac{1}{n^{2}}\right)$
(c) $O\left(\frac{1}{n^{2}}\right)$
(d) $O\left(\frac{1}{n}\right)$
7. The rates of convergence are:
(a) $O\left(h^{2}\right)$
(b) $O(h)$
(c) $O\left(h^{2}\right)$
(d) $O(h)$
8. (a) If $\left|\alpha_{n}-\alpha\right| /\left(1 / n^{p}\right) \leq K$, then

$$
\left|\alpha_{n}-\alpha\right| \leq K\left(1 / n^{p}\right) \leq K\left(1 / n^{q}\right) \quad \text { since } \quad 0<q<p
$$

Thus

$$
\left|\alpha_{n}-\alpha\right| /\left(1 / n^{p}\right) \leq K \quad \text { and } \quad\left\{\alpha_{n}\right\}_{n=1}^{\infty} \rightarrow \alpha
$$

with rate of convergence $O\left(1 / n^{p}\right)$.
(b)

n	$1 / n$	$1 / n^{2}$	$1 / n^{3}$	$1 / n^{5}$
5	0.2	0.04	0.008	0.0016
10	0.1	0.01	0.001	0.0001
50	0.02	0.0004	8×10^{-6}	1.6×10^{-7}
100	0.01	10^{-4}	10^{-6}	10^{-8}

The most rapid convergence rate is $O\left(1 / n^{4}\right)$.
9. (a) If $F(h)=L+O\left(h^{p}\right)$, there is a constant $k>0$ such that

$$
|F(h)-L| \leq k h^{p}
$$

for sufficiently small $h>0$. If $0<q<p$ and $0<h<1$, then $h^{q}>h^{p}$. Thus, $k h^{p}<k h^{q}$, so

$$
|F(h)-L| \leq k h^{q} \quad \text { and } \quad F(h)=L+O\left(h^{q}\right)
$$

(b) For various powers of h we have the entries in the following table.

h	h^{2}	h^{3}	h^{4}
0.5	0.25	0.125	0.0625
0.1	0.01	0.001	0.0001
0.01	0.0001	0.00001	10^{-8}
0.001	10^{-6}	10^{-9}	10^{-12}

The most rapid convergence rate is $O\left(h^{4}\right)$.
10. Suppose that for sufficiently small $|x|$ we have positive constants K_{1} and K_{2} independent of x, for which

$$
\left|F_{1}(x)-L_{1}\right| \leq K_{1}|x|^{\alpha} \quad \text { and } \quad\left|F_{2}(x)-L_{2}\right| \leq K_{2}|x|^{\beta}
$$

Let $c=\max \left(\left|c_{1}\right|,\left|c_{2}\right|, 1\right), K=\max \left(K_{1}, K_{2}\right)$, and $\delta=\max (\alpha, \beta)$.
(a) We have

$$
\begin{aligned}
\left|F(x)-c_{1} L_{1}-c_{2} L_{2}\right| & =\left|c_{1}\left(F_{1}(x)-L_{1}\right)+c_{2}\left(F_{2}(x)-L_{2}\right)\right| \\
& \leq\left|c_{1}\right| K_{1}|x|^{\alpha}+\left|c_{2}\right| K_{2}|x|^{\beta} \leq c K\left[|x|^{\alpha}+|x|^{\beta}\right] \\
& \leq c K|x|^{\gamma}\left[1+|x|^{\delta-\gamma}\right] \leq \tilde{K}|x|^{\gamma}
\end{aligned}
$$

for sufficiently small $|x|$ and some constant \tilde{K}. Thus, $F(x)=c_{1} L_{1}+c_{2} L_{2}+O\left(x^{\gamma}\right)$.
(b) We have

$$
\begin{aligned}
\left|G(x)-L_{1}-L_{2}\right| & =\left|F_{1}\left(c_{1} x\right)+F_{2}\left(c_{2} x\right)-L_{1}-L_{2}\right| \\
& \leq K_{1}\left|c_{1} x\right|^{\alpha}+K_{2}\left|c_{2} x\right|^{\beta} \leq K c^{\delta}\left[|x|^{\alpha}+|x|^{\beta}\right] \\
& \leq K c^{\delta}|x|^{\gamma}\left[1+|x|^{\delta-\gamma}\right] \leq \tilde{K}|x|^{\gamma}
\end{aligned}
$$

for sufficiently small $|x|$ and some constant \tilde{K}. Thus, $G(x)=L_{1}+L_{2}+O\left(x^{\gamma}\right)$.
11. Since

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=x \quad \text { and } \quad x_{n+1}=1+\frac{1}{x_{n}}
$$

we have

$$
x=1+\frac{1}{x}, \quad \text { so } \quad x^{2}-x-1=0
$$

The quadratic formula implies that

$$
x=\frac{1}{2}(1+\sqrt{5}) .
$$

This number is called the golden ratio. It appears frequently in mathematics and the sciences.
12. Let $F_{n}=C^{n}$. Substitute into $F_{n+2}=F_{n}+F_{n+1}$ to obtain $C^{n+2}=C^{n}+C^{n+1}$ or $C^{n}\left[C^{2}-\right.$ $C-1]=0$. Solving the quadratic equation $C^{2}-C-1=0$ gives $C=\frac{1 \pm \sqrt{5}}{2}$. So $F_{n}=$ $a\left(\frac{1+\sqrt{5}}{2}\right)^{n}+b\left(\frac{1-\sqrt{5}}{2}\right)$ satisfies the recurrence relation $F_{n+2}=F_{n}+F_{n+1}$. For $F_{0}=1$ and $F_{1}=1$ we need $a=\frac{1+\sqrt{5}}{2} \frac{1}{\sqrt{5}}$ and $b=-\left(\frac{1-\sqrt{5}}{2}\right) \frac{1}{\sqrt{5}}$. Hence, $F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right)$.
13. $S U M=\sum_{i=1}^{N} x_{i}$. This saves one step since initialization is $S U M=x_{1}$ instead of $S U M=0$. Problems may occur if $N=0$.
14. (a) OUTPUT is PRODUCT $=0$ which is correct only if $x_{i}=0$ for some i.
(b) OUTPUT is PRODUCT $=x_{1} x_{2} \ldots x_{N}$.
(c) OUTPUT is PRODUCT $=x_{1} x_{2} \ldots x_{N}$ but exists with the correct value 0 if one of $x_{i}=0$.
15. (a) $n(n+1) / 2$ multiplications; $(n+2)(n-1) / 2$ additions.
(b) $\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{i} b_{j}\right)$ requires n multiplications; $(n+2)(n-1) / 2$ additions.

