Mathematical Preliminaries

Exercise Set 1.1, page 14

- 1. For each part, $f \in C[a, b]$ on the given interval. Since f(a) and f(b) are of opposite sign, the Intermediate Value Theorem implies that a number c exists with f(c) = 0.
- 2. (a) $f(x) = \sqrt{(x) \cos x}; f(0) = -1 < 0, f(1) = 1 \cos 1 > 0.45 > 0$; Intermediate Value Theorem implies there is a c in (0, 1) such that f(c) = 0.
 - (b) $f(x) = e^x x^2 + 3x 2$; f(0) = -1 < 0, f(1) = e > 0; Intermediate Value Theorem implies there is a c in (0, 1) such that f(c) = 0.
 - (c) $f(x) = -3\tan(2x) + x$; f(0) = 0 so there is a c in [0, 1] such that f(c) = 0.
 - (d) $f(x) = \ln x x^2 + \frac{5}{2}x 1$; $f(\frac{1}{2}) = -\ln 2 < 0$, $f(1) = \frac{1}{2} > 0$; Intermediate Value Theorem implies there is a c in $(\frac{1}{2}, 1)$ such that f(c) = 0.
- 3. For each part, $f \in C[a, b]$, f' exists on (a, b) and f(a) = f(b) = 0. Rolle's Theorem implies that a number c exists in (a, b) with f'(c) = 0. For part (d), we can use [a, b] = [-1, 0] or [a, b] = [0, 2].
- 4. (a) [0,1]
 - (b) [0,1], [4,5], [-1,0]
 - (c) [-2, -2/3], [0, 1], [2, 4]
 - (d) [-3, -2], [-1, -0.5], and [-0.5, 0]
- 5. The maximum value for |f(x)| is given below.
 - (a) 0.4620981
 - (b) 0.8
 - (c) 5.164000
 - (d) 1.582572
- 6. (a) $f(x) = \frac{2x}{x^2+1}$; $0 \le x \le 2$; $f(x) \ge 0$ on [0,2], f'(1) = 0, f(0) = 0, f(1) = 1, $f(2) = \frac{4}{5}$, $\max_{0 \le x \le 2} |f(x)| = 1$.
 - (b) $f(x) = x^2 \sqrt{4-x}; 0 \le x \le 4; f'(0) = 0, f'(3.2) = 0, f(0) = 0, f(3.2) = 9.158934436, f(4) = 0, \max_{0 \le x \le 4} |f(x)| = 9.158934436.$
 - (c) $f(x) = x^3 4x + 2; 1 \le x \le 2; f'(\frac{2\sqrt{3}}{3}) = 0, f'(1) = -1, f(\frac{2\sqrt{3}}{3}) = -1.079201435, f(2) = 2, \max_{1 \le x \le 2} |f(x)| = 2.$

(d)
$$f(x) = x\sqrt{3-x^2}; 0 \le x \le 1; f'(\sqrt{\frac{3}{2}}) = 0, \sqrt{\frac{3}{2}} \text{ not in } [0,1], f(0) = 0, f(1) = \sqrt{2}, \max_{0 \le x \le 1} |f(x)| = \sqrt{2}.$$

- 7. For each part, $f \in C[a, b]$, f' exists on (a, b) and f(a) = f(b) = 0. Rolle's Theorem implies that a number c exists in (a, b) with f'(c) = 0. For part (d), we can use [a, b] = [-1, 0] or [a, b] = [0, 2].
- 8. Suppose p and q are in [a, b] with $p \neq q$ and f(p) = f(q) = 0. By the Mean Value Theorem, there exists $\xi \in (a, b)$ with

$$f(p) - f(q) = f'(\xi)(p - q).$$

But, f(p) - f(q) = 0 and $p \neq q$. So $f'(\xi) = 0$, contradicting the hypothesis.

- 9. (a) $P_2(x) = 0$
 - (b) $R_2(0.5) = 0.125$; actual error = 0.125
 - (c) $P_2(x) = 1 + 3(x-1) + 3(x-1)^2$
 - (d) $R_2(0.5) = -0.125$; actual error = -0.125
- 10. $P_3(x) = 1 + \frac{1}{2}x \frac{1}{8}x^2 + \frac{1}{16}x^3$

x	0.5	0.75	1.25	1.5
$\begin{array}{c} P_3(x) \\ \sqrt{x+1} \\ \sqrt{x+1} - P_3(x) \end{array}$	$\begin{array}{c} 1.2265625\\ 1.2247449\\ 0.0018176\end{array}$	$\begin{array}{c} 1.3310547 \\ 1.3228757 \\ 0.0081790 \end{array}$	1.5517578 1.5 0.0517578	$\begin{array}{c} 1.6796875 \\ 1.5811388 \\ 0.0985487 \end{array}$

11. Since

$$P_2(x) = 1 + x$$
 and $R_2(x) = \frac{-2e^{\xi}(\sin\xi + \cos\xi)}{6}x^3$

for some ξ between x and 0, we have the following:

- (a) $P_2(0.5) = 1.5$ and $|f(0.5) P_2(0.5)| \le 0.0932;$
- (b) $|f(x) P_2(x)| \le 1.252;$
- (c) $\int_0^1 f(x) \, dx \approx 1.5;$
- (d) $|\int_0^1 f(x) dx \int_0^1 P_2(x) dx| \le \int_0^1 |R_2(x)| dx \le 0.313$, and the actual error is 0.122.
- 12. $P_2(x) = 1.461930 + 0.617884 \left(x \frac{\pi}{6}\right) 0.844046 \left(x \frac{\pi}{6}\right)^2$ and $R_2(x) = -\frac{1}{3}e^{\xi}(\sin\xi + \cos\xi) \left(x \frac{\pi}{6}\right)^3$ for some ξ between x and $\frac{\pi}{6}$.
 - (a) $P_2(0.5) = 1.446879$ and f(0.5) = 1.446889. An error bound is 1.01×10^{-5} , and the actual error is 1.0×10^{-5} .
 - (b) $|f(x) P_2(x)| \le 0.135372$ on [0, 1]
 - (c) $\int_0^1 P_2(x) dx = 1.376542$ and $\int_0^1 f(x) dx = 1.378025$
 - (d) An error bound is 7.403×10^{-3} , and the actual error is 1.483×10^{-3} .

13. $P_3(x) = (x-1)^2 - \frac{1}{2}(x-1)^3$

- (a) $P_3(0.5) = 0.312500$, f(0.5) = 0.346574. An error bound is $0.291\overline{6}$, and the actual error is 0.034074.
- (b) $|f(x) P_3(x)| \le 0.291\overline{6}$ on [0.5, 1.5]
- (c) $\int_{0.5}^{1.5} P_3(x) dx = 0.08\overline{3}, \ \int_{0.5}^{1.5} (x-1) \ln x dx = 0.088020$
- (d) An error bound is $0.058\overline{3}$, and the actual error is 4.687×10^{-3} .
- 14. (a) $P_3(x) = -4 + 6x x^2 4x^3$; $P_3(0.4) = -2.016$ (b) $|R_3(0.4)| \le 0.05849$; $|f(0.4) - P_3(0.4)| = 0.013365367$ (c) $P_4(x) = -4 + 6x - x^2 - 4x^3$; $P_4(0.4) = -2.016$
 - (d) $|R_4(0.4)| \le 0.01366; |f(0.4) P_4(0.4)| = 0.013365367$
- 15. $P_4(x) = x + x^3$
 - (a) $|f(x) P_4(x)| \le 0.012405$
 - (b) $\int_0^{0.4} P_4(x) dx = 0.0864, \int_0^{0.4} x e^{x^2} dx = 0.086755$
 - (c) 8.27×10^{-4}
 - (d) $P'_4(0.2) = 1.12$, f'(0.2) = 1.124076. The actual error is 4.076×10^{-3} .
- 16. First we need to convert the degree measure for the sine function to radians. We have $180^\circ = \pi$ radians, so $1^\circ = \frac{\pi}{180}$ radians. Since,

$$f(x) = \sin x$$
, $f'(x) = \cos x$, $f''(x) = -\sin x$, and $f'''(x) = -\cos x$,

we have f(0) = 0, f'(0) = 1, and f''(0) = 0. The approximation $\sin x \approx x$ is given by

$$f(x) \approx P_2(x) = x$$
, and $R_2(x) = -\frac{\cos \xi}{3!} x^3$.

If we use the bound $|\cos \xi| \leq 1$, then

$$\left|\sin\frac{\pi}{180} - \frac{\pi}{180}\right| = \left|R_2\left(\frac{\pi}{180}\right)\right| = \left|\frac{-\cos\xi}{3!}\left(\frac{\pi}{180}\right)^3\right| \le 8.86 \times 10^{-7}.$$

17. Since $42^{\circ} = 7\pi/30$ radians, use $x_0 = \pi/4$. Then

$$\left| R_n \left(\frac{7\pi}{30} \right) \right| \le \frac{\left(\frac{\pi}{4} - \frac{7\pi}{30} \right)^{n+1}}{(n+1)!} < \frac{(0.053)^{n+1}}{(n+1)!}.$$

For $|R_n(\frac{7\pi}{30})| < 10^{-6}$, it suffices to take n = 3. To 7 digits,

$$\cos 42^{\circ} = 0.7431448$$
 and $P_3(42^{\circ}) = P_3(\frac{7\pi}{30}) = 0.7431446$,

so the actual error is 2×10^{-7} .

18.
$$P_n(x) = \sum_{k=0}^n x^k, \ n \ge 19$$

19.
$$P_n(x) = \sum_{k=0}^n \frac{1}{k!} x^k, \ n \ge 7$$

- 20. For *n* odd, $P_n(x) = x \frac{1}{3}x^3 + \frac{1}{5}x^5 + \dots + \frac{1}{n}(-1)^{(n-1)/2}x^n$. For *n* even, $P_n(x) = P_{n-1}(x)$.
- 21. A bound for the maximum error is 0.0026.
- 22. For x < 0, f(x) < 2x + k < 0, provided that $x < -\frac{1}{2}k$. Similarly, for x > 0, f(x) > 2x + k > 0, provided that $x > -\frac{1}{2}k$. By Theorem 1.11, there exists a number c with f(c) = 0. If f(c) = 0 and f(c') = 0 for some $c' \neq c$, then by Theorem 1.7, there exists a number p between c and c' with f'(p) = 0. However, $f'(x) = 3x^2 + 2 > 0$ for all x.
- 23. Since $R_2(1) = \frac{1}{6}e^{\xi}$, for some ξ in (0,1), we have $|E R_2(1)| = \frac{1}{6}|1 e^{\xi}| \le \frac{1}{6}(e-1)$.
- 24. (a) Use the series

$$e^{-t^2} = \sum_{k=0}^{\infty} \frac{(-1)^k t^{2k}}{k!}$$
 to integrate $\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$

and obtain the result.

(b) We have

$$\frac{2}{\sqrt{\pi}}e^{-x^2}\sum_{k=0}^{\infty}\frac{2^kx^{2k+1}}{1\cdot 3\cdots (2k+1)} = \frac{2}{\sqrt{\pi}}\left[1-x^2+\frac{1}{2}x^4-\frac{1}{6}x^7+\frac{1}{24}x^8+\cdots\right]$$
$$\cdot\left[x+\frac{2}{3}x^3+\frac{4}{15}x^5+\frac{8}{105}x^7+\frac{16}{945}x^9+\cdots\right]$$
$$=\frac{2}{\sqrt{\pi}}\left[x-\frac{1}{3}x^3+\frac{1}{10}x^5-\frac{1}{42}x^7+\frac{1}{216}x^9+\cdots\right] = \operatorname{erf}(x)$$

- (c) 0.8427008
- (d) 0.8427069
- (e) The series in part (a) is alternating, so for any positive integer n and positive x we have the bound

$$\left| \operatorname{erf}(x) - \frac{2}{\sqrt{\pi}} \sum_{k=0}^{n} \frac{(-1)^{k} x^{2k+1}}{(2k+1)k!} \right| < \frac{x^{2n+3}}{(2n+3)(n+1)!}$$

We have no such bound for the positive term series in part (b).

- 25. (a) $P_n^{(k)}(x_0) = f^{(k)}(x_0)$ for k = 0, 1, ..., n. The shapes of P_n and f are the same at x_0 .
 - (b) $P_2(x) = 3 + 4(x 1) + 3(x 1)^2$.
- 26. (a) The assumption is that $f(x_i) = 0$ for each i = 0, 1, ..., n. Applying Rolle's Theorem on each on the intervals $[x_i, x_{i+1}]$ implies that for each i = 0, 1, ..., n-1 there exists a number z_i with $f'(z_i) = 0$. In addition, we have

 $a \le x_0 < z_0 < x_1 < z_1 < \dots < z_{n-1} < x_n \le b.$

(b) Apply the logic in part (a) to the function g(x) = f'(x) with the number of zeros of g in [a, b] reduced by 1. This implies that numbers w_i , for i = 0, 1, ..., n-2 exist with

 $g'(w_i) = f''(w_i) = 0$, and $a < z_0 < w_0 < z_1 < w_1 < \cdots < w_{n-2} < z_{n-1} < b$.

- (c) Continuing by induction following the logic in parts (a) and (b) provides n+1-j distinct zeros of $f^{(j)}$ in [a, b].
- (d) The conclusion of the theorem follows from part (c) when j = n, for in this case there will be (at least) (n + 1) n = 1 zero in [a, b].
- 27. First observe that for $f(x) = x \sin x$ we have $f'(x) = 1 \cos x \ge 0$, because $-1 \le \cos x \le 1$ for all values of x.
 - (a) The observation implies that f(x) is non-decreasing for all values of x, and in particular that f(x) > f(0) = 0 when x > 0. Hence for $x \ge 0$, we have $x \ge \sin x$, and $|\sin x| = \sin x \le x = |x|$.
 - (b) When x < 0, we have -x > 0. Since $\sin x$ is an odd function, the fact (from part (a)) that $\sin(-x) \le (-x)$ implies that $|\sin x| = -\sin x \le -x = |x|$. As a consequence, for all real numbers x we have $|\sin x| \le |x|$.
- 28. (a) Let x_0 be any number in [a, b]. Given $\epsilon > 0$, let $\delta = \epsilon/L$. If $|x x_0| < \delta$ and $a \le x \le b$, then $|f(x) f(x_0)| \le L|x x_0| < \epsilon$.
 - (b) Using the Mean Value Theorem, we have

$$|f(x_2) - f(x_1)| = |f'(\xi)||x_2 - x_1|,$$

for some ξ between x_1 and x_2 , so

$$|f(x_2) - f(x_1)| \le L|x_2 - x_1|.$$

- (c) One example is $f(x) = x^{1/3}$ on [0, 1].
- 29. (a) The number $\frac{1}{2}(f(x_1) + f(x_2))$ is the average of $f(x_1)$ and $f(x_2)$, so it lies between these two values of f. By the Intermediate Value Theorem 1.11 there exist a number ξ between x_1 and x_2 with

$$f(\xi) = \frac{1}{2}(f(x_1) + f(x_2)) = \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2).$$

(b) Let $m = \min\{f(x_1), f(x_2)\}$ and $M = \max\{f(x_1), f(x_2)\}$. Then $m \le f(x_1) \le M$ and $m \le f(x_2) \le M$, so

$$c_1 m \le c_1 f(x_1) \le c_1 M$$
 and $c_2 m \le c_2 f(x_2) \le c_2 M$.

Thus

$$(c_1 + c_2)m \le c_1 f(x_1) + c_2 f(x_2) \le (c_1 + c_2)M$$

and

$$m \le \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} \le M$$

By the Intermediate Value Theorem 1.11 applied to the interval with endpoints x_1 and x_2 , there exists a number ξ between x_1 and x_2 for which

$$f(\xi) = \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2}.$$

(c) Let $f(x) = x^2 + 1$, $x_1 = 0$, $x_2 = 1$, $c_1 = 2$, and $c_2 = -1$. Then for all values of x,

$$f(x) > 0$$
 but $\frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} = \frac{2(1) - 1(2)}{2 - 1} = 0$

30. (a) Since f is continuous at p and $f(p) \neq 0$, there exists a $\delta > 0$ with

$$|f(x) - f(p)| < \frac{|f(p)|}{2},$$

for $|x - p| < \delta$ and a < x < b. We restrict δ so that $[p - \delta, p + \delta]$ is a subset of [a, b]. Thus, for $x \in [p - \delta, p + \delta]$, we have $x \in [a, b]$. So

$$-\frac{|f(p)|}{2} < f(x) - f(p) < \frac{|f(p)|}{2} \quad \text{and} \quad f(p) - \frac{|f(p)|}{2} < f(x) < f(p) + \frac{|f(p)|}{2}.$$

If f(p) > 0, then

$$f(p) - \frac{|f(p)|}{2} = \frac{f(p)}{2} > 0$$
, so $f(x) > f(p) - \frac{|f(p)|}{2} > 0$

If f(p) < 0, then |f(p)| = -f(p), and

$$f(x) < f(p) + \frac{|f(p)|}{2} = f(p) - \frac{f(p)}{2} = \frac{f(p)}{2} < 0.$$

In either case, $f(x) \neq 0$, for $x \in [p - \delta, p + \delta]$.

(b) Since f is continuous at p and f(p) = 0, there exists a $\delta > 0$ with

|f(x) - f(p)| < k, for $|x - p| < \delta$ and a < x < b.

We restrict δ so that $[p - \delta, p + \delta]$ is a subset of [a, b]. Thus, for $x \in [p - \delta, p + \delta]$, we have

|f(x)| = |f(x) - f(p)| < k.

Exercise Set 1.2, page 28

1. We have

	Absolute error	Relative error
(a)	0.001264	4.025×10^{-4}
(b)	7.346×10^{-6}	2.338×10^{-6}
(c)	2.818×10^{-4}	1.037×10^{-4}
(d)	2.136×10^{-4}	1.510×10^{-4}

2. We have

	Absolute error	Relative error
$\overline{(a)}$	2.647×10^{1}	1.202×10^{-3} arule
(b)	1.454×10^1	1.050×10^{-2}
(c)	420	1.042×10^{-2}
(d)	3.343×10^3	9.213×10^{-3}

9:29pm February 22, 2015

- 3. The largest intervals are
 - (a) (149.85, 150.15)
 - (b) (899.1, 900.9)
 - (c) (1498.5, 1501.5)
 - (d) (89.91, 90.09)
- 4. The largest intervals are:
 - (a) (3.1412784, 3.1419068)
 - (b) (2.7180100, 2.7185536)
 - (c) (1.4140721, 1.4143549)
 - (d) (1.9127398, 1.9131224)
- 5. The calculations and their errors are:
 - (a) (i) 17/15 (ii) 1.13 (iii) 1.13 (iv) both 3×10^{-3}
 - (b) (i) 4/15 (ii) 0.266 (iii) 0.266 (iv) both 2.5×10^{-3}
 - (c) (i) 139/660 (ii) 0.211 (iii) 0.210 (iv) 2×10^{-3} , 3×10^{-3}
 - (d) (i) 301/660 (ii) 0.455 (iii) 0.456 (iv) 2×10^{-3} , 1×10^{-4}
- 6. We have

	Approximation	Absolute error	Relative error
(a) (b) (c) (d)	$134 \\ 133 \\ 2.00 \\ 1.67$	0.079 0.499 0.327 0.003	$5.90 \times 10^{-4} \\ 3.77 \times 10^{-3} \\ 0.195 \\ 1.70 \times 10^{-3}$

7. We have

	Approximation	Absolute error	Relative error
(a)	1.80	0.154	0.0786
(b)	-15.1	0.0546	3.60×10^{-3}
(c)	0.286	2.86×10^{-4}	10^{-3}
(d)	23.9	0.058	2.42×10^{-3}

8. We have

	Approximation	Absolute error	Relative error
(a)	1.986	0.03246	0.01662
(b)	-15.16	0.005377	$3.548 imes10^{-4}$
(c)	0.2857	1.429×10^{-5}	5×10^{-5}
(d)	23.96	1.739×10^{-3}	7.260×10^{-5}

9. We have

	Approximation	Absolute error	Relative error
(a)	3.55	1.60	0.817
(b)	-15.2	0.0454	0.00299
(c)	0.284	0.00171	0.00600
(d)	0	0.02150	1

10. We have

	Approximation	Absolute error	Relative error
(a)	1.983	0.02945	0.01508
(b)	-15.15	0.004622	3.050×10^{-4}
(c)	0.2855	2.143×10^{-4}	$7.5 imes 10^{-4}$
(d)	23.94	0.018261	7.62×10^{-4}

11. We have

	Approximation	Absolute error	Relative error
(a) (b)	3.14557613 3.14162103	$\begin{array}{c} 3.983 \times 10^{-3} \\ 2.838 \times 10^{-5} \end{array}$	$\begin{array}{c} 1.268 \times 10^{-3} \\ 9.032 \times 10^{-6} \end{array}$

12. We have

	Approximation	Absolute error	Relative error
(a) (b)	$2.7166667 \\ 2.718281801$	$\begin{array}{c} 0.0016152 \\ 2.73 \times 10^{-8} \end{array}$	$5.9418 \times 10^{-4} \\ 1.00 \times 10^{-8}$

13. (a) We have

$$\lim_{x \to 0} \frac{x \cos x - \sin x}{x - \sin x} = \lim_{x \to 0} \frac{-x \sin x}{1 - \cos x} = \lim_{x \to 0} \frac{-\sin x - x \cos x}{\sin x} = \lim_{x \to 0} \frac{-2 \cos x + x \sin x}{\cos x} = -2$$

(b) $f(0.1) \approx -1.941$

(c)
$$\frac{x(1-\frac{1}{2}x^2) - (x-\frac{1}{6}x^3)}{x - (x-\frac{1}{6}x^3)} = -2$$

(d) The relative error in part (b) is 0.029. The relative error in part (c) is 0.00050.

14. (a)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{x} = \lim_{x \to 0} \frac{e^x + e^{-x}}{1} = 2$$

- (b) $f(0.1) \approx 2.05$
- (c) $\frac{1}{x}\left(\left(1+x+\frac{1}{2}x^2+\frac{1}{6}x^3\right)-\left(1-x+\frac{1}{2}x^2-\frac{1}{6}x^3\right)\right)=\frac{1}{x}\left(2x+\frac{1}{3}x^3\right)=2+\frac{1}{3}x^2;$ using three-digit rounding arithmetic and x=0.1, we obtain 2.00.
- (d) The relative error in part (b) is = 0.0233. The relative error in part (c) is = 0.00166.

15.

	$\overline{x_1}$	Absolute error	Relative error	$\overline{x_2}$	Absolute error	Relative error	
(a) (b)	92.26 0 005421	0.01542 1 264 × 10 ⁻⁶	1.672×10^{-4} 2 333 × 10^{-4}	0.005419	6.273×10^{-7} 4.580×10^{-3}	1.157×10^{-4} 4 965 × 10 ⁻⁵	
(c) (d)	10.98 -0.001149	6.875×10^{-3} 7.566×10^{-8}	6.257×10^{-4} 6.584×10^{-5}	$0.001149 \\ -10.98$	7.566×10^{-8} 6.875×10^{-3}	6.584×10^{-5} 6.257×10^{-4}	

16.

	Approximation for x_1	Absolute error	Relative error
(a) (b) (c) (d)	$1.903 \\ -0.07840 \\ 1.223 \\ 6.235$	$\begin{array}{c} 6.53518\times 10^{-4}\\ 8.79361\times 10^{-6}\\ 1.29800\times 10^{-4}\\ 1.7591\times 10^{-3} \end{array}$	$\begin{array}{c} 3.43533 \times 10^{-4} \\ 1.12151 \times 10^{-4} \\ 1.06144 \times 10^{-4} \\ 2.8205 \times 10^{-4} \end{array}$

$\begin{array}{ccccccc} (a) & 0.7430 & 4.04830 \times 10^{-4} & 5.44561 \\ (b) & -4.060 & 3.80274 \times 10^{-4} & 9.36723 \times 10^{-5} \\ (c) & -2.223 & 1.2977 \times 10^{-4} & 5.8393 \times 10^{-5} \\ (d) & -0.3208 & 1.2063 \times 10^{-4} & 3.7617 \times 10^{-4} \end{array}$		Approximation for x_2	Absolute error	Relative error
	(a) (b) (c) (d)	$\begin{array}{c} 0.7430 \\ -4.060 \\ -2.223 \\ -0.3208 \end{array}$	$\begin{array}{c} 4.04830\times10^{-4}\\ 3.80274\times10^{-4}\\ 1.2977\times10^{-4}\\ 1.2063\times10^{-4} \end{array}$	$\begin{array}{c} 5.44561\\ 9.36723\times 10^{-5}\\ 5.8393\times 10^{-5}\\ 3.7617\times 10^{-4}\end{array}$

17.

	Approximation for x_1	Absolute error	Relative error
(a)	92.24	0.004580	4.965×10^{-5}
(b)	0.005417	2.736×10^{-6}	$5.048 imes 10^{-4}$
(c)	10.98	6.875×10^{-3}	6.257×10^{-4}
(d)	-0.001149	7.566×10^{-8}	6.584×10^{-5}

9:29pm February 22, 2015

	Approximation for x_2	Absolute error	Relative error
$(a) \\ (b) \\ (c) \\ (d)$	$\begin{array}{c} 0.005418 \\ -92.25 \\ 0.001149 \\ -10.98 \end{array}$	$\begin{array}{c} 2.373\times10^{-6}\\ 5.420\times10^{-3}\\ 7.566\times10^{-8}\\ 6.875\times10^{-3} \end{array}$	$\begin{array}{c} 4.377\times 10^{-4}\\ 5.875\times 10^{-5}\\ 6.584\times 10^{-5}\\ 6.257\times 10^{-4} \end{array}$

18.

	Approximation for x_1	Absolute error	Relative error
(a) (b) (c) (d)	$ 1.901 \\ -0.07843 \\ 1.222 \\ 6.235 $	$\begin{array}{c} 1.346\times10^{-3}\\ 2.121\times10^{-5}\\ 8.702\times10^{-4}\\ 1.759\times10^{-3} \end{array}$	$\begin{array}{c} 7.078\times10^{-4}\\ 2.705\times10^{-4}\\ 7.116\times10^{-4}\\ 2.820\times10^{-4} \end{array}$

	Approximation for x_2	Absolute error	Relative error
(a)	0.7438	3.952×10^{-4}	5.316×10^{-4}
(b)	-4.059	$6.197 imes10^{-4}$	$1.526 imes 10^{-4}$
(c)	-2.222	$8.702 imes 10^{-4}$	$3.915 imes 10^{-4}$
(d)	-0.3207	2.063×10^{-5}	6.433×10^{-5}

19. The machine numbers are equivalent to

- (a) 3224
- (b) -3224
- (c) 1.32421875
- $(d) \ 1.324218750000002220446049250313080847263336181640625$
- 20. (a) Next Largest: 3224.000000000045474735088646411895751953125; Next Smallest: 3223.99999999999954525264911353588104248046875
 - (b) Next Largest: -3224.000000000045474735088646411895751953125;
 Next Smallest: -3223.99999999999954525264911353588104248046875
 - (c) Next Largest: 1.324218750000002220446049250313080847263336181640625;
 Next Smallest: 1.3242187499999997779553950749686919152736663818359375
 - (d) Next Largest: 1.324218750000000444089209850062616169452667236328125;
 Next Smallest: 1.32421875
- 21. (b) The first formula gives -0.00658, and the second formula gives -0.0100. The true three-digit value is -0.0116.
- 22. (a) -1.82

- (b) 7.09×10^{-3}
- (c) The formula in (b) is more accurate since subtraction is not involved.
- 23. The approximate solutions to the systems are
 - (a) x = 2.451, y = -1.635
 - (b) x = 507.7, y = 82.00
- 24. (a) x = 2.460 y = -1.634(b) x = 477.0 y = 76.93
- 25. (a) In nested form, we have $f(x) = (((1.01e^x 4.62)e^x 3.11)e^x + 12.2)e^x 1.99.$ (b) -6.79
 - (c) −7.07
 - (d) The absolute errors are

$$|-7.61 - (-6.71)| = 0.82$$
 and $|-7.61 - (-7.07)| = 0.54$.

Nesting is significantly better since the relative errors are

$$\left|\frac{0.82}{-7.61}\right| = 0.108$$
 and $\left|\frac{0.54}{-7.61}\right| = 0.071$,

26. Since $0.995 \le P \le 1.005$, $0.0995 \le V \le 0.1005$, $0.082055 \le R \le 0.082065$, and $0.004195 \le N \le 0.004205$, we have $287.61^{\circ} \le T \le 293.42^{\circ}$. Note that $15^{\circ}C = 288.16K$.

When P is doubled and V is halved, $1.99 \le P \le 2.01$ and $0.0497 \le V \le 0.0503$ so that $286.61^{\circ} \le T \le 293.72^{\circ}$. Note that $19^{\circ}C = 292.16K$. The laboratory figures are within an acceptable range.

27. (a) m = 17

(b) We have

$$\binom{m}{k} = \frac{m!}{k!(m-k)!} = \frac{m(m-1)\cdots(m-k-1)(m-k)!}{k!(m-k)!} = \binom{m}{k} \binom{m-1}{k-1} \cdots \binom{m-k-1}{1}$$

(c) m = 181707

(d) 2,597,000; actual error 1960; relative error 7.541×10^{-4}

28. When $d_{k+1} < 5$,

$$\left|\frac{y - fl(y)}{y}\right| = \frac{0.d_{k+1}\dots \times 10^{n-k}}{0.d_1\dots \times 10^n} \le \frac{0.5 \times 10^{-k}}{0.1} = 0.5 \times 10^{-k+1}.$$

When $d_{k+1} > 5$,

$$\left|\frac{y - fl(y)}{y}\right| = \frac{(1 - 0.d_{k+1}\dots) \times 10^{n-k}}{0.d_1\dots \times 10^n} < \frac{(1 - 0.5) \times 10^{-k}}{0.1} = 0.5 \times 10^{-k+1}$$

- 29. (a) The actual error is $|f'(\xi)\epsilon|$, and the relative error is $|f'(\xi)\epsilon| \cdot |f(x_0)|^{-1}$, where the number ξ is between x_0 and $x_0 + \epsilon$.
 - (b) (i) 1.4×10^{-5} ; 5.1×10^{-6} (ii) 2.7×10^{-6} ; 3.2×10^{-6}
 - (c) (i) 1.2; 5.1×10^{-5} (ii) 4.2×10^{-5} ; 7.8×10^{-5}

Exercise Set 1.3, page 39

- 1 (a) The approximate sums are 1.53 and 1.54, respectively. The actual value is 1.549. Significant roundoff error occurs earlier with the first method.
 - (b) The approximate sums are 1.16 and 1.19, respectively. The actual value is 1.197. Significant roundoff error occurs earlier with the first method.
 - 2. We have

App	proximation	Absolute Error	Relative Error
(a) (b) (c) (d)	2.715 2.716 2.716 2.718	$\begin{array}{c} 3.282 \times 10^{-3} \\ 2.282 \times 10^{-3} \\ 2.282 \times 10^{-3} \\ 2.818 \times 10^{-4} \end{array}$	$\begin{array}{c} 1.207\times10^{-3}\\ 8.394\times10^{-4}\\ 8.394\times10^{-4}\\ 1.037\times10^{-4} \end{array}$

- 3. (a) 2000 terms
 - (b) 20,000,000,000 terms
- 4. 4 terms
- 5. 3 terms
- 6. (a) $O\left(\frac{1}{n}\right)$
 - (b) $O\left(\frac{1}{n^2}\right)$
 - (c) $O\left(\frac{1}{n^2}\right)$
 - (d) $O\left(\frac{1}{n}\right)$
- 7. The rates of convergence are:
 - (a) $O(h^2)$
 - (b) O(h)
 - (c) $O(h^2)$
 - (d) O(h)
- 8. (a) If $|\alpha_n \alpha|/(1/n^p) \leq K$, then

$$|\alpha_n - \alpha| \le K(1/n^p) \le K(1/n^q) \quad \text{since} \quad 0 < q < p.$$

Thus

$$|\alpha_n - \alpha|/(1/n^p) \le K$$
 and $\{\alpha_n\}_{n=1}^{\infty} \to \alpha$

with rate of convergence $O(1/n^p)$.

(b)

n	1/n	$1/n^2$	$1/n^3$	$1/n^5$
$5 \\ 10 \\ 50 \\ 100$	$0.2 \\ 0.1 \\ 0.02 \\ 0.01$	$0.04 \\ 0.01 \\ 0.0004 \\ 10^{-4}$	$0.008 \\ 0.001 \\ 8 \times 10^{-6} \\ 10^{-6}$	$\begin{array}{c} 0.0016\\ 0.0001\\ 1.6\times10^{-7}\\ 10^{-8}\end{array}$

The most rapid convergence rate is $O(1/n^4)$.

9. (a) If $F(h) = L + O(h^p)$, there is a constant k > 0 such that

$$|F(h) - L| \le kh^p,$$

for sufficiently small h > 0. If 0 < q < p and 0 < h < 1, then $h^q > h^p$. Thus, $kh^p < kh^q$, so

$$|F(h) - L| \le kh^q$$
 and $F(h) = L + O(h^q)$

(b) For various powers of h we have the entries in the following table.

h	h^2	h^3	h^4
0.5	0.25	0.125	0.0625
0.1	0.01	0.001	0.0001
0.01	0.0001	0.00001	10^{-12}
0.001	10 °	10 5	10 12

The most rapid convergence rate is $O(h^4)$.

- 10. Suppose that for sufficiently small |x| we have positive constants K_1 and K_2 independent of x, for which
 - $|F_1(x) L_1| \le K_1 |x|^{\alpha}$ and $|F_2(x) L_2| \le K_2 |x|^{\beta}$. Let $c = \max(|c_1|, |c_2|, 1), K = \max(K_1, K_2), \text{ and } \delta = \max(\alpha, \beta).$
 - (a) We have

$$|F(x) - c_1 L_1 - c_2 L_2| = |c_1 (F_1(x) - L_1) + c_2 (F_2(x) - L_2)|$$

$$\leq |c_1|K_1|x|^{\alpha} + |c_2|K_2|x|^{\beta} \leq cK[|x|^{\alpha} + |x|^{\beta}]$$

$$\leq cK|x|^{\gamma}[1 + |x|^{\delta - \gamma}] \leq \tilde{K}|x|^{\gamma},$$

for sufficiently small |x| and some constant \tilde{K} . Thus, $F(x) = c_1L_1 + c_2L_2 + O(x^{\gamma})$. (b) We have

$$|G(x) - L_1 - L_2| = |F_1(c_1x) + F_2(c_2x) - L_1 - L_2|$$

$$\leq K_1 |c_1x|^{\alpha} + K_2 |c_2x|^{\beta} \leq K c^{\delta} [|x|^{\alpha} + |x|^{\beta}]$$

$$\leq K c^{\delta} |x|^{\gamma} [1 + |x|^{\delta - \gamma}] \leq \tilde{K} |x|^{\gamma},$$

for sufficiently small |x| and some constant \tilde{K} . Thus, $G(x) = L_1 + L_2 + O(x^{\gamma})$.

11. Since

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = x \text{ and } x_{n+1} = 1 + \frac{1}{x_n},$$

we have

$$x = 1 + \frac{1}{x}$$
, so $x^2 - x - 1 = 0$.

The quadratic formula implies that

$$x = \frac{1}{2} \left(1 + \sqrt{5} \right).$$

This number is called the *golden ratio*. It appears frequently in mathematics and the sciences.

- 12. Let $F_n = C^n$. Substitute into $F_{n+2} = F_n + F_{n+1}$ to obtain $C^{n+2} = C^n + C^{n+1}$ or $C^n [C^2 C 1] = 0$. Solving the quadratic equation $C^2 C 1 = 0$ gives $C = \frac{1\pm\sqrt{5}}{2}$. So $F_n = a(\frac{1+\sqrt{5}}{2})^n + b(\frac{1-\sqrt{5}}{2})$ satisfies the recurrence relation $F_{n+2} = F_n + F_{n+1}$. For $F_0 = 1$ and $F_1 = 1$ we need $a = \frac{1+\sqrt{5}}{2}\frac{1}{\sqrt{5}}$ and $b = -(\frac{1-\sqrt{5}}{2})\frac{1}{\sqrt{5}}$. Hence, $F_n = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^{n+1} (\frac{1-\sqrt{5}}{2})^{n+1})$.
- 13. $SUM = \sum_{i=1}^{N} x_i$. This saves one step since initialization is $SUM = x_1$ instead of SUM = 0. . Problems may occur if N = 0.
- 14. (a) OUTPUT is PRODUCT = 0 which is correct only if $x_i = 0$ for some *i*.
 - (b) OUTPUT is PRODUCT = $x_1 x_2 \dots x_N$.
 - (c) OUTPUT is PRODUCT = $x_1 x_2 \dots x_N$ but exists with the correct value 0 if one of $x_i = 0$.
- 15. (a) n(n+1)/2 multiplications; (n+2)(n-1)/2 additions.

(b)
$$\sum_{i=1}^{n} a_i \left(\sum_{j=1}^{i} b_j \right)$$
 requires *n* multiplications; $(n+2)(n-1)/2$ additions.